Abstract
The Grenvillian-Appalachian boundary is characterized by pervasive mylonitic deformation and retrograde alteration of a suite of imbricated allochthonous and parautochthonous gneisses that were thrust upon the Grenvillian continental margin during the lower Paleozoic. Seismic reflection profiling across this structural boundary zone reveals prominent dipping reflectors interpreted as overthrust basement slices (parautochthons) of the Green Mountain Anticlinorium. In contrast, a seismic refraction study of the Grenvillian-Appalachian boundary reveals a sub-horizontally layered seismic velocity model that is difficult to reconcile with the pronounced sub-vertical structures observed in the Green mountains. A suite of rock samples was collected from the Green Mountain Anticlinorium and measured at high pressures in the laboratory to determine the seismic properties of these allochthonous and parautochthonous gneisses. The laboratory-measured seismic velocities agree favorably with the modelled velocity structure across the Grenvillian-Appalachian boundary suggesting that the rock samples are reliable indicators of the rock mass as whole. Samples of the parautochthonous Grenvillian basement exposed in the Green Mountains have lower velocities, by about 0.5 km/s, than lithologically equivalent units exposed in the eastern Adirondack Highlands. Velocity reduction in the Green Mountain parautochthons can be accounted for by retrograde metamorphic alteration (hydration) of the paragneisses. Seismic anisotropies, ranging from 2 to 12%, in the mylonitized Green Mountain paragneisses may also contribute to the observation of lower seismic velocities, where the direction of ray propagation is normal to the foliation. The velocity properties of the Green Mountain paragneisses are thus insufficiently different from the mantling Appalachian allochthons to permit their resolution by the Ontario-New York-New England seismic refraction profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.