Abstract
Maximum parsimony reconciliation is a fundamental technique for studying the evolutionary histories of pairs of entities such as genes and species, parasites and hosts, and species and their biogeographical habitats. In these contexts, reconciliation is generally performed using the duplication-transfer-loss (DTL) model in a maximum parsimony framework. While efficient maximum parsimony reconciliation algorithms are known for the DTL model, the number of such reconciliations can grow exponentially with the sizes of the two phylogenetic trees. Choosing a maximum parsimony reconciliation arbitrarily may lead to conclusions that are not supported, and may even be contradicted, by other equally optimal reconciliations. This paper addresses the fundamental problem of how well a single reconciliation can represent the entire space of optimal reconciliations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.