Abstract
The central problem addressed by this interdisciplinary paper is to predict related software artifacts that are usually changed together by a developer. The working focus of programmers is revealed by means of their interactions with a software repository that receives a set of cohesive artifact changes within one commit transaction. This implicit knowledge of interdependent changes can be exploited in order to recommend likely further changes, given a set of already changed artifacts. We suggest a hybrid approach based on Latent Semantic Indexing (LSI) and machine learning methods to recommend software development artifacts, that is predicting a sequence of configuration items that were committed together. As opposed to related approaches to repository mining that are mostly based on symbolic methods like Association Rule Mining (ARM), our connectionist method is able to generalize onto unseen artifacts. Text analysis methods are employed to consider their textual attributes. We applied our technique to three publicly available datasets from the PROMISE Repository of Software Engineering Databases. The evaluation showed that the connectionist LSI-approach achieves a significantly higher recommendation accuracy than existing methods based on ARM. Even when generalizing onto unseen artifacts, our approach still provides an accuracy of up to 72.7% on the given datasets.KeywordsChange impact analysisrecurrent neural networkslatent semantic indexingrepository miningartifact recommendation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.