Abstract
Query recommendation is an integral part of modern search engines that helps users find their information needs. Traditional query recommendation methods usually focus on recommending users relevant queries, which attempt to find alternative queries with close search intent to the original query. Whereas the ultimate goal of query recommendation is to assist users to accomplish their search task successfully, while not just find relevant queries in spite of they can sometimes return useful search results. To better achieve the ultimate goal of query recommendation, a more reasonable way is to recommend users high utility queries, i.e., queries that can return more useful information. In this paper, we propose a novel utility query recommendation approach based on absorbing random walk on the session-flow graph, which can learn queries' utility by simultaneously modeling both users' reformulation behaviors and click behaviors. Extensively experiments were conducted on real query logs, and the results show that our method significantly outperforms the state-of-the-art methods under the evaluation metric QRR and MRD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.