Abstract
Various concepts, methods, and technical architectures of recommender systems have been integrated into E-commerce storefronts, such as Amazon.com, Netflix, etc. Thereby, recently, Web users have become more familiar with the notion of recommendations. Nevertheless, little work has been done to integrate recommender systems into scientific information retrieval repositories, such as libraries, content management systems, online learning platforms, etc. This paper presents an implementation of a hybrid recommender system to personal the user’s experience on a real online learning repository and vertical search engine named HyperManyMedia. This repository contains educational content of courses, lectures, multimedia resources, etc. The main objective of this paper is to illustrate the methods, concepts, and architecture that we used to integrate a hybrid recommender system into the HyperManyMedia repository. This recommender system is driven by two types of recommendations: content-based (domain ontology model) and rule-based (learner’s interestbased and cluster-based). Finally, combining the contentbased and the rule-based models provides the user with hybrid recommendations that influence the ranking of the retrieved documents with different weights. Our experiments were carried out on the HyperManyMedia semantic search engine at Western Kentucky University. We used Top-n-Recall and Top-n-Precision to measure the effectiveness of re-ranking based on the learner’s semantic profile. Overall, the results demonstrate the effectiveness of the re-ranking based on personalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Emerging Technologies in Web Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.