Abstract
In this paper we present a method for reformulating the Recommender Systems problem in an Information Retrieval one. In our tests we have a dataset of users who give ratings for some movies; we hide some values from the dataset, and we try to predict them again using its remaining portion (the so-called "leave-n-out approach"). In order to use an Information Retrieval algorithm, we reformulate this Recommender Systems problem in this way: a user corresponds to a document, a movie corresponds to a term, the active user (whose rating we want to predict) plays the role of the query, and the ratings are used as weigths, in place of the weighting schema of the original IR algorithm. The output is the ranking list of the documents ("users") relevant for the query ("active user"). We use the ratings of these users, weighted according to the rank, to predict the rating of the active user. We carry out the comparison by means of a typical metric, namely the accuracy of the predictions returned by the algorithm, and we compare this to the real ratings from users. In our first tests, we use two different Information Retrieval algorithms: LSPR, a recently proposed model based on Discrete Fourier Transform, and a simple vector space model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.