Abstract
An increasing number of studies have reported using natural language processing (NLP) to assist observational research by extracting clinical information from electronic health records (EHRs). Currently, no standardized reporting guidelines for NLP-assisted observational studies exist. The absence of detailed reporting guidelines may create ambiguity in the use of NLP-derived content, knowledge gaps in the current research reporting practices, and reproducibility challenges. To address these issues, we conducted a scoping review of NLP-assisted observational clinical studies and examined their reporting practices, focusing on NLP methodology and evaluation. Through our investigation, we discovered a high variation regarding the reporting practices, such as inconsistent use of references for measurement studies, variation in thereporting location (reference, appendix, and manuscript), and different granularity of NLP methodology and evaluation details. To promote the wide adoption and utilization of NLP solutions in clinical research, we outline several perspectives that align with the six principles released by the World Health Organization (WHO) that guide the ethical use of artificial intelligence for health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.