Abstract

The application of the first three generations of organic refrigerants, namely, CFCs, HCFCs, and HFCs, in an organic Rankine cycle has been widely investigated. As environmentally friendly successors to the above three generations of refrigerants, hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) have also attracted increasing research interest for their application in the organic Rankine cycle (ORC). Based on molecular complexity, characteristic points on saturation liquid and vapor curve and area of characteristic regions in temperature-entropy (T-s) diagram, eight common hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) are classified, analyzed, and evaluated. In addition, the type of heat source and specific operating conditions in which these eight hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) are most effective are recommended. The results show that molecular complexity of hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) mainly depends on the length of the C chain, and then on the number and location of Cl and F atoms. HFO-1243zf has the best comprehensive evaluation indicator, and it is noteworthy as a recommended working fluid for subcritical ORC systems. The result obtained in this paper may provide a reference for the design and actual operation of Organic Rankine Cycle system using HFO and HCFO as working fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call