Abstract

A multilevel latent class model (MLCM) is a useful tool for analyzing data arising from hierarchically nested structures. One important issue for MLCMs is determining the minimum sample sizes needed to obtain reliable and unbiased results. In this simulation study, the sample sizes required for MLCMs were investigated under various conditions. A series of design factors, including sample sizes at two levels, the distinctness and the complexity of the latent structure, and the number of indicators were manipulated. The results revealed that larger samples are required when the latent classes are less distinct and more complex with fewer indicators. This study also provides recommendations about the minimum required sample sizes that satisfied all four criteria-model selection accuracy, parameter estimation bias, standard error bias, and coverage rate-as well as rules of thumb for sample size requirements when applying MLCMs in data analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.