Abstract

Megavoltage computed tomography (MVCT) image quality metrics were evaluated on an Accuray Radixact unit to recommend scan settings for the implementation of a consistent adaptive radiotherapy program. Megavoltage computed tomography image quality was evaluated and compared to a kilovoltage CT (kVCT) simulator using a commercial cone beam computed tomography image quality phantom. Megavoltage computed tomographies were acquired on the Accuray Radixact using fine, normal, and coarse pitches, with all available reconstruction slice thicknesses, each of which were reconstructed using standard and iterative reconstruction (IR). Image quality metrics (IQM) were evaluated using DoseLab: automatically and manually calculated spatial resolution, subject contrast, and contrast‐to‐noise ratio (CNR). Scanning time was 15.6 s/cm for fine, 8.1 s/cm for normal, and 5.6 s/cm for coarse pitch. Automatically evaluated spatial resolutions ranged from 0.39, 0.41, to 0.42 lp/mm for standard reconstruction and from 0.24, 0.21, to 0.18 lp/mm for soft‐tissue IR, respectively, with general IR yielding values in between these. Spatial resolution for kVCT was measured to be at least 0.42 lp/mm. Contrast was consistent across MVCT settings with 8.1 ± 0.2%, while kVCT contrast was 10.27 ± 0.05%. CNR was calculated to be 3.3 ± 0.4 for standard reconstruction, 7.4 ± 0.4 for general IR, and 12.0 ± 1.9 for soft‐tissue IR. It was found that increasing reconstruction slice thickness for a given pitch does not improve IQMs. Based on the consistency of contrast metrics across pitch values and the only slightly reduced spatial resolution using normal compared to fine pitch, we recommend the use of normal pitch with 2 mm slice thickness to maximize image quality for ART while limiting scanning time. Only for sites for which improved CNR is required and reduced spatial resolution is acceptable, soft‐tissue IR is recommended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.