Abstract

Pacemakers are currently identified as a contraindication for the use of magnetic growth rods (MGRs). This arises from concern that magnetic fields generated by the MGR external remote controller (ERC) during lengthening procedures may induce pacemaker dysfunction. We investigated (1) whether MGR lengthening affects pacemaker function, and (2) if the magnetic field of a pacemaker affects MGR lengthening. MGRs were tested in conjunction with an magnetic resonance imaging-compatible pacemaker, which was connected to a virtual patient under continuous cardiac monitoring. To determine whether pacemaker function was affected during MGR lengthening, the electrocardiogram trace was monitored for arrhythmias, whereas an ERC was applied to lengthen the MGRs at varying distances from the pacemaker. To investigate if MGR lengthening was affected by the presence of a pacemaker, at the start and end of the experiment, the ability of the rods to fully elongate and shorten was tested to check for conservation of function. When the pacemaker was in normal mode, <16 cm away from the activated ERC during MGR lengthening, pacemaker function was affected by the ERC's magnetic forces. At this distance, prophylactically switching the pacemaker to tonic mode before lengthening prevented occurrence of inappropriate pacing discharges. No deleterious effect of the pacemaker's magnetic field on the MGR lengthening mechanism was identified. Magnetic resonance imaging-compatible pacemakers appear safe for concomitant use with MGRs, provided a pacemaker technician prophylactically switches the pacemaker to tonic function before outpatient lengthening procedures. This experiment was designed to provide the first safety information on MGR lengthening in children with pacemakers. Although currently a rare clinical scenario, with increasing use of MGRs, this clinical scenario may arise more frequently in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.