Abstract

Tennis racket properties are of interest to sports engineers and designers as it allows them to evaluate performance, review trends and compare designs. This study explored mathematical models that correlated to the mass moments of inertia of a tennis racket, both about an axis through the butt and about the longitudinal axis, using its dimensions, mass and centre of mass location. The models were tested on 416 rackets, dating from 1874 to 2017. Results showed that moments of inertia about the butt and longitudinal axis can be estimated to within − 4 to 5% and − 11 to 12% of measured values, respectively, using the proposed models on original rackets. When rackets were customised, with 30 g of additional mass, moment of inertia about the butt could be estimated within 6%, but the model for moment of inertia about the longitudinal axis was less accurate (largest error at 25%). A Stepwise Linear Regression model indicated that racket mass and then centre of mass location had the largest effect on moment of inertia about the handle, with head width having the largest effect on moment of inertia about the longitudinal axis.

Highlights

  • Tennis equipment plays a critical role in player performance [1]

  • A racket has three moments of inertia (MOI) acting about the principal axes through the centre of mass (CoM), and changes in these affect the racket in play

  • If the axis is located approximately 10 cm (4 inches) from the butt and parallel to the lateral in-plane axis, the MOI is typically defined as the ‘swing-weight’ (Is) as it relates to how hard it is to accelerate the racket through a swing [6, 7]

Read more

Summary

Introduction

Tennis equipment plays a critical role in player performance [1]. Tennis has evolved drastically from its origins in the 1870s, mainly due to developments of the racket. These MOIs effect the racket by determining its resistance to rotation about the principal axes. The parallel axis theorem can be applied to calculate MOI about different locations, as MOI is often measured about, or moved to, an axis passing through the handle to be more representative of the axis about which the player swings the racket [2]. If the axis is located approximately 10 cm (4 inches) from the butt and parallel to the lateral in-plane axis, the MOI is typically defined as the ‘swing-weight’ (Is) as it relates to how hard it is to accelerate the racket through a swing [6, 7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.