Abstract
Recommendations based on off-line data processing has attracted increasing attention from both research communities and IT industries. The recommendation techniques could be used to explore huge volumes of data, identify the items that users probably like, and translate the research results into real-world applications, etc. This paper surveys the recent progress in the research of recommendations based on off-line data processing, with emphasis on new techniques (such as context-based recommendation, temporal recommendation), and new features (such as serendipitous recommendation). Finally, we outline some existing challenges for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.