Abstract
AbstractWhen a user connects to the Internet to fulfill his needs, he often encounters a huge amount of related information. Recommender systems are the techniques for massively filtering information and offering the items that users find them satisfying and interesting. The advances in machine learning methods, especially deep learning, have led to great achievements in recommender systems, although these systems still suffer from challenges such as cold‐start and sparsity problems. To solve these problems, context information such as user communication network is usually used. In this article, we have proposed a novel recommendation method based on matrix factorization and graph analysis methods, namely Louvain for community detection and HITS for finding the most important node within the trust network. In addition, we leverage deep autoencoders to initialize users and items latent factors, and the Node2vec deep embedding method gathers users' latent factors from the user trust graph. The proposed method is implemented on Ciao and Epinions standard datasets. The experimental results and comparisons demonstrate that the proposed approach is superior to the existing state‐of‐the‐art recommendation methods. Our approach outperforms other comparative methods and achieves great improvements, that is, 15.56% RMSE improvement for Epinions and 18.41% RMSE improvement for Ciao.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.