Abstract

Sentiment Analysis (SA) systems are very common because most people trust it based on the opinions, emotions, attitudes and feelings shared by the users for decision making purposes about the product, service, news analytics etc. Sentiment analysis or opinion mining is used to automatically detect and classify sentiments into positive, negative or neutral opinion on product or service through certain algorithms. The expeditious growth of internet leads to the increase of reviews about product, services, movies, restaurants or vacation destinations and organizations. In order to increase or decrease the market value of the product, spammers may give the fake ratings. Sentiment Analysis system face great difficulties in deploying the algorithms to classify each review as either honest review, posted by the customers after using the products, or spam review, posted by the individual spammer or spammer groups. Another major challenge faced by the sentiment analysis system is that it lacks the accuracy of predicting implicit and explicit features present in the dataset is low, which is the major challenge in opinion mining system. The proposed system deals with text pre-processing which helps in improving the overall performance of the sentiment analysis systems and an effective system is developed to identify the fake reviews present in the dataset. Association Rule Mining along with K-Means clustering is used to achieve higher efficiency in classification of implicit and explicit features. Lexicon method is used for the classification of sentiments into positive and negative polarities. The advantage of proposed system is that, it can identify and remove the fake reviews in the dataset and extraction of both implicit and explicit feature can be identified through Lexicon based Method along with its polarities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.