Abstract

Saccharomyces pastorianus, referred to as lager yeasts, are hybrids of S. cerevisiae and S. eubayanus. Isolates within the species are divided into two groups (I and II) based on chromosome structure and composition. Following the hybridisation, the parental chromosomes underwent homeologous recombination, generating a set of hybrid chromosomes unique to the species. Here, we assessed the recombination events in seven lager yeast genomes to more clearly define the evolutionary route of lager yeasts. Meta-analysis of the recombination epicentres, as well as a detailed analysis of recombination events at the MAT locus, reveals a more complex evolutionary relationship between the group I and II lager yeasts than previously considered and identifies several divergent routes of evolution leading to the current S. pastorianus strains. We show that recombination epicentres contain sequential runs of pyrimidines, often flanked by purines, on one strand of the DNA, and identify two common sequence motifs present in >80% of the recombination epicentres, indicating that a common mechanism might account for the recombination events. Taken together, the data support a sequential hybridisation model of evolution for the two types of lager yeasts and suggest that the genomes of this newly emerged species are highly dynamic and continually evolving.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.