Abstract
SummaryDielectronic satellite (DES) lines arising from the radiative decay of ions with excited cores are used as diagnostics of the plasma conditions found in astronomical objects. In collisional plasmas, the most common DES lines are due to an electron being dielectronically captured by a He-like ion, forming a 3-electron, Li-like ion in a doubly excited, autoionizing state (i.e. 1s2l2l’ (KLL), 1s2l3l’ (KLM), etc). These states can decay to bound levels by emitting a photon, completing a process known as dielectronic recombination (DR). The autoionizing KLL complex gives rise to 22 DES lines, labeled ‘a’ through ‘v’, via transitions of the type 1s2l2l’→1s22 l. These lines are seen at energies lower than the He-like resonance line (1s2p(1P0 1)→ 1s2(1S0) - which is also referred to as the ‘w’ line). The unified recombination method, which treats photoionization and electron-ion recombination in a manner which couples autoionizing states to the continuum, has been extended to study the DES lines of the highly charged ions Ca XVIII, Fe XXIV, and Ni XXVI. In contrast to obtaining a single energy point for a DES line (as is the case for existing theoretical approaches based on the isolated resonance approximation - IRA), the unified method: (i) provides detailed profiles of DES lines, including the blending of lines which occurs in nature, (ii) includes the background contribution of radiative recombination (RR), and (iii) provides a simple relation between the resonance strengths and recombination rates of narrow lines which is useful for astrophysical modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.