Abstract
The roentgenoluminescence spectra, temperature-dependent activator luminescence, optically stimulated luminescence, and the effect of IR irradiation on the yield and spectral composition of the low-temperature roentgenoluminescence and thermoluminescence curves of the Y3Al5O12:Ce3+ scintillator have been studied in the temperature range 85–295 K. The results, coupled with earlier data, suggest that the Ce3+ ions in the garnet crystal studied form Ce3+p hole centers and increase the concentration of electronic F−-centers responsible for the IR stimulation band at 940 nm. The reduction in roentgenoluminescence yield on cooling Y3Al5O12:Ce3+ to below 230 K is due to the significant localization of excited carriers at defects, which show up in thermoluminescence peaks and optical stimulation spectra. The low-temperature Ce3+ luminescence in Y3Al5O12:Ce3+ seems to result from the recombination of activator-bound excitons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.