Abstract

Results of comprehensive research into optical and luminescent-kinetic characteristics of europium-doped cadmium iodide crystals excited by nitrogen laser radiation, α-particles, and x-rays are presented. Crystals under study have been grown by the Bridgman–Stockbarger method. The doping EuCl3 admixture was introduced into the charge in quantities of about 0.05 and 1.0 mol%. Impurity absorption detected in the near-edge region of the crystals is interpreted as part of the Eu2+ ion long-wavelength band associated with f–d-transitions. The cation impurity and matrix defects in CdI2:Eu2+ crystals create complex centers responsible for emission with a maximum in the 580–600-nm region. The short component in the luminescence decay kinetics of weakly-doped crystal excited by α-particles and x-ray photons is due to the exciton emission characteristic of CdI2. The slow component in the scintillation pulse results from recombination of charge carriers followed by creation of exciton-like states on the defect-impurity centers. Laser or x-ray excitation induces light-sum accumulation on the trapping levels at a depth of 0.2–0.6 eV that is mainly related to matrix microdefects. Trapping centers associated with the chlorine impurity are observed in the heavily-doped crystal. Photostimulated luminescence at 85 K arising at the electron stage of the recombination process is caused by recombination of electrons released from F-type centers with holes localized near the activator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call