Abstract
Bacterial etiolation and decline (BED), caused by Acidovorax avenae, is an emerging disease of creeping bentgrass on golf courses in the United States. We performed the first comprehensive analysis of A. avenae on a nationwide collection of turfgrass- and maize-pathogenic A. avenae. Surprisingly, our results reveal that the turfgrass-pathogenic A. avenae in North America are not only highly divergent but also belong to two distinct phylogroups. Both phylogroups specifically infect turfgrass but are more closely related to maize pathogens than to each other. This suggests that, although the disease is only recently reported, it has likely been infecting turfgrass for a long time. To identify a genetic basis for the host specificity, we searched for genes closely related among turfgrass strains but distantly related to their homologs from maize strains. We found a cluster of 11 such genes generated by three ancient recombination events within the type III secretion system (T3SS) pathogenicity island. Ever since the recombination, the cluster has been conserved by strong purifying selection, hinting at its selective importance. Together our analyses suggest that BED is an ancient disease that may owe its host specificity to a highly conserved cluster of 11 T3SS genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.