Abstract

Here, we investigate the intrinsic nonradiative recombination mechanism in hematite single crystals that decides the photocarrier lifetime under solar illumination. On the basis of the small polaron theory, we propose that the photogenerated electron-hole pair along with its induced lattice deformation in hematite could be treated as a pseudocoordination-complex (PCC) dispersed in a solid medium. We demonstrate that the nonradiative recombination rate at different temperatures determined from the transient absorption spectroscopy can be excellently described by the nonradiative transition theory developed previously for parallels of the PCC model. Our finding suggests that at room temperature the nonradiative recombination in hematite substantially depends on the probability of quantum tunneling of the nuclear configuration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.