Abstract

AbstractAbsorber layers of microcrystalline silicon thin-film solar cells deposited by plasma-enhanced chemical vapor deposition are characterized regarding the recombination lifetime. The characterization is based on a comparison of experimentally determined solar cell characteristics with results from numerical device simulations. Evaluation of the dark reverse saturation current indicates a strong dependence of τ on the hydrogen dilution during the deposition. Close to the transition region to amorphous growth where the highest solar cell efficiencies are observed τ is maximum within the crystalline deposition regime and equals 30 ns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call