Abstract

We investigated the transport and photovoltaic properties of Cu-deficient Cu(In1−xGax)Se2 (CIGS) thin-film solar cells containing ordered vacancy compound (OVC) layers. Raman spectra clearly revealed that the CIGS thin films with lower Cu concentrations contained larger volumes of OVC layers. The temperature-dependent inverse ideality factor showed that the CIGS film containing more (less) OVC layers exhibited tunneling-mediated bulk (interface)-dominated recombination. The capacitance–voltage characteristics and admittance spectra showed that the CIGS cells containing more OVC layers had more uniform carrier concentration near the junction and less interfacial trap states compared with cells with less OVC layers. These results suggested that the Cu-deficiency and the resulting OVC layer formation reduced the interfacial defect density and suppressed the interface recombination processes of the CIGS solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.