Abstract

We present the first measurements and simulations of recombination fluorescence from ultracold neutral calcium plasmas. This method probes three-body recombination at times less than 1 micros, shorter than previously published time scales. For the lowest initial electron temperatures, the recombination rate scales with the density as n0(2.2), significantly slower than the predicted n0(3). Recombination fluorescence opens a new diagnostic window in ultracold plasmas. In most cases it probes deeply bound level populations that depend critically on electron energetics. However, a perturbation in the calcium 4snd Rydberg series allows our fluorescence measurements to probe the population in weakly bound levels that result just after recombination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call