Abstract

The recombination dynamics of vapor-liquid-solid grown GaAs-nanowires with an axial p-n heterojunction is investigated by spatially and time-resolved photoluminescence spectroscopy. By scanning across the doping transition of single p-n and n-p doped nanowires, respectively, the particular influence of surface losses in differently doped areas is studied. We found a significantly reduced non-radiative recombination for the n-doped region compared to the p-doped one, which can be attributed to suppressed surface losses because of the characteristic band bending at the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.