Abstract

The replication of covalently closed circular supercoiled (form I) DNA in prokaryotes is generally controlled at the initiation level by a rate-limiting effector. Once initiated, replication proceeds via one of two possible modes (theta or sigma replication) which do not rely on functions involved in DNA repair and general recombination. Recently, a novel plasmid replication mode, leading to the accumulation of linear multigenome-length plasmid concatemers in both gram-positive and gram-negative bacteria, has been described. Unlike form I DNA replication, an intermediate recombination step is most probably involved in the initiation of concatemeric plasmid DNA replication. On the basis of structural and functional studies, we infer that recombination-dependent plasmid replication shares important features with phage late replication modes and, in several aspects, parallels the synthesis of plasmid concatemers in phage-infected cells. The characterization of the concatemeric plasmid replication mode has allowed new insights into the mechanisms of DNA replication and recombination in prokaryotes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call