Abstract

Transient and quasi-steady-state photoconductance methods were used to measure minority carrier lifetime in p-type Czochralski silicon processed in very clean conditions to contain oxide precipitates. Precipitation treatments were varied to produce a matrix of samples, which were then characterised by chemical etching and transmission electron microscopy to determine the density and morphology of the precipitates. The lifetime component associated with the precipitates was isolated by preventing or factoring out the effects of other known recombination mechanisms. The lifetime component due to unstrained precipitates could be extremely high (up to ~4.5ms). Recombination at unstrained precipitates was found to be weak, with a capture coefficient of ~8 x 10-8cm3s-1at an injection level equal to half the doping level. Strained precipitates and defects associated with them (dislocations and stacking faults) act as much stronger recombination centres with a capture coefficient of ~3 x 10-6cm3s-1at the same level of injection. The lifetime associated with strained precipitates increases with temperature with a ~0.18eV activation energy over the room temperature to 140°C range. The shape of the injection level dependence of lifetime was similar for all the specimens studied, with the magnitude of the lifetime being dependent on the precipitate density, strain state and temperature, but independent of precipitate size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.