Abstract

The interplay between hybridization and recombination can have a dramatic effect on the likelihood of speciation or persistence of incompletely isolated species. Many models have suggested recombination can oppose speciation, and several recent empirical investigations suggest that reductions in recombination between various components of reproductive isolation and/or adaptation can allow species to persist in the presence of gene flow. In this article, we discuss these ideas in relation to speciation models, phylogenetic analyses, and species concepts. In particular, we revisit genetic architectures and population mechanisms that create genetic correlations and facilitate divergence in the face of gene flow. Linkage among genes contributing to adaptation or reproductive isolation due to chromosomal rearrangements as well as pleiotropy or proximity of loci can greatly increase the odds of species divergence or persistence. Finally, we recommend recombination to be a focus of inquiry when studying the origins of biological diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.