Abstract
Silicon solar cells typically feature textured surfaces on the front side to increase light absorption. An unwanted side effect of the texture is an increase in surface recombination compared with smoother surfaces. On the rear side of the solar cell, light absorption is not an issue; therefore, planar surfaces are used to decrease surface recombination. In processing, a planar surface can be achieved by wet chemical single-side etching of previously textured surfaces, resulting in a smoothed rear surface. This study investigates surface passivation of these chemically polished surfaces in dependence on the degree of smoothness. Surface passivation is achieved by thin thermally grown silicon oxides. Special focus is set on injection dependence and the influence of postmetallization annealing. Measured optical properties of different surfaces are compared with different optical simulation models. Finally, recombination and optical properties are connected to solar cell performance of fabricated passivated emitter and rear cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.