Abstract

This report describes the first year of a continuing research study to understand how recombination, trapping, and band-mobility modification affecting the electronic properties of amorphous semiconductors can be measured, characterized, and described by an appropriate spectrum of defect states, and how light-induced defects in a-Si:H and native defects in a-SiGe:H affect transport properties in these materials. The objective was to determine how the Staebler-Wronski defects affect the electronic processes in a-Si:H and a-SiGe:H films. To do this, electroluminescence (EL) and forward bias current in p-i-n devices (i-layer thickness > 2 {mu}m) were studied both experimentally and theoretically before and after light soaking. A simple picture was developed to compare forward bias current to the EL signal. The result was unexpected: the product of the final current times the rise time was not constant before and after light soaking as expected from the concept of gain band width, but instead changed radically. The rise time t{sub x} increased by more than one order of magnitude while the final current I{sub f} did not change significantly with light soaking. On the other hand the I{sub f}t{sub x} product did hold close to a constant when only the applied voltage changed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.