Abstract

We show that even in quantum-dot (QD) lasers with very low threshold current densities (J/sub th/=40--50 A/cm/sup 2/ at 300 K), the temperature sensitivity of the threshold current arises from nonradiative recombination that comprises /spl sim/60% to 70% of J/sub th/ at 300 K, whereas the radiative part of J/sub th/ is almost temperature insensitive. The influence of the nonradiative recombination mechanism decreases with increasing hydrostatic pressure and increasing band gap, which leads to a decrease of the threshold current. We also studied, for the first time, the band gap dependence of the radiative part of J/sub th/, which in contrast increases strongly with increasing band gap. These results suggest that Auger recombination is an important intrinsic recombination mechanism for 1.3-/spl mu/m lasers, even in a very low threshold QD device, and that it is responsible for the temperature sensitivity of the threshold current.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call