Abstract

DNA double-strand breaks are very genotoxic lesions that can result in chromosome aberrations. The current view is that DNA double-strand breaks are repaired most efficiently through homologous recombination in yeast and simple end-joining in mammalian cells. However, recent experiments reveal that both repair pathways are conserved from yeast to mammals, including humans. The challenge ahead is to put the different pieces of the jigsaw together into coherent mechanisms for both pathways and to determine their relative contributions to ionizing-radiation resistance and to the prevention of genetic instability and carcinogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.