Abstract
Meiotic recombination is generally suppressed across the centromere of eukaryotic chromosomes. In human, megabase-long satellite sequences and contiguous segmental duplications hamper both physical and fine scale genetic mapping in regions flanking centromeric DNA. We have developed polymorphic microsatellite markers embedded within the duplicated most proximal sequences of the long arm and of the short arm of chromosome 21 by using paralogous specific bases as anchor points for their specific detection. Segregation analysis in CEPH reference pedigrees shows that recombination is repressed significantly across the centromere of chromosome 21 both in male and in female but not in the most proximal 21q region in female. Extreme size variations of the alpha-satellite I blocks transmitted in these families and deduced from quantitative FISH analysis are not correlated with the inter-individual variations of recombination activity observed in the peri-centromeric region. Finally, none of 28 families with a trisomy 21 child previously associated with a nullitransitional meiosis I non-disjunction event presents a recombination exchange across the centromere. This confirms that, for this group of errors, the lack of recombination is the primary susceptibility factor, not abnormal recombination in the centromeric region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.