Abstract

Apical membrane Ag 1 (AMA1) is one of the leading candidate Ags for inclusion in a subunit vaccine against blood-stage malaria. However, the efficacy of Ab-inducing recombinant AMA1 protein vaccines in phase IIa/b clinical trials remains disappointing. In this article, we describe the development of recombinant human adenovirus serotype 5 and modified vaccinia virus Ankara vectors encoding AMA1 from the Plasmodium chabaudi chabaudi strain AS. These vectors, when used in a heterologous prime-boost regimen in BALB/c mice, are capable of inducing strong transgene-specific humoral and cellular immune responses. We show that this vaccination regimen is protective against a nonlethal P. chabaudi chabaudi strain AS blood-stage challenge, resulting in reduced peak parasitemias. The role of vaccine-induced, AMA1-specific Abs and T cells in mediating the antiparasite effect was investigated by in vivo depletion of CD4(+) T cells and adoptive-transfer studies into naive and immunodeficient mice. Depletion of CD4(+) T cells led to a loss of vaccine-induced protection. Adoptive-transfer studies confirmed that efficacy is mediated by both CD4(+) T cells and Abs functioning in the context of an intact immune system. Unlike previous studies, these results confirm that Ag-specific CD4(+) T cells, induced by a clinically relevant vaccine-delivery platform, can make a significant contribution to vaccine blood-stage efficacy in the P. chabaudi model. Given that cell-mediated immunity may also contribute to parasite control in human malaria, these data support the clinical development of viral-vectored vaccines that induce both T cell and Abs against Plasmodium falciparum blood-stage malaria Ags like AMA1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.