Abstract

Epsilon toxin (ETX), produced by Clostridium perfringens types B and D, has been touted as a potential biological weapon and is known to induce fatal enterotoxemia in a variety of livestock animals. For the efficient production of recombinant proteins with the objective of investigating the effects of different recombinant vaccines against ETX, a bicistronic design (BCD) expression system including the ETX coding sequence with mutation of amino acid 106 from Histidine to Proline (ETXH106P) in the first cistron, followed by Cholera Toxin B (CTB) linked with the ETX coding sequence with mutation of amino acid 196 from Tyrosine to Glutamic acid (ETXY196E) in the second cistron, was generated under the control of a single promoter. Rabbits were immunized twice with five inactivated recombinant Escherichia coli (E. coli) vaccines containing 100 µg/ml of the recombinant mutant rETXH106P/CTB-rETXY196E proteins mixed with different adjuvants. Apart from rETXH106P/CTB-rETXY196E-IMS1313-vaccinated rabbits, the neutralizing antibody titers of rETXH106P/CTB-rETXY196E-vaccinated rabbits were higher after the initial immunization than those administered the ETX toxoid or current commercial vaccines. rETXH106P/CTB-rETXY196E mixed with ISA201 induced the highest neutralizing antibody titer of 120 after the first immunization, suggesting that 0.1 ml of pooled sera could neutralize 120× mouse LD100 (100% lethal dose) of ETX. Following the second vaccination, rETXH106P/CTB-rETXY196E mixed with ISA201 or GR208 produced the highest neutralizing titer of 800. Rabbits from all vaccinated groups were completely protected from a 2× rabbit LD100 of ETX challenge. These results show that these novel recombinant proteins can induce a strong immune response and represent potential targets for the development of a commercial vaccine against the C. perfringens epsilon toxin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call