Abstract

Excessive production of nitric oxide (NO) by the inducible form of NO synthase (iNOS) plays a key role in the development of endotoxin shock. Tumor necrosis factor-alpha (TNF-alpha) induces iNOS, thereby contributing to the development of shock. We recently reported that recombinant tissue factor pathway inhibitor (r-TFPI), an important inhibitor of the extrinsic pathway of the coagulation system, inhibits TNF-alpha production by monocytes. In this study, we investigated whether r-TFPI could ameliorate hypotension by inhibiting excessive production of NO in rats given lipopolysaccharide (LPS). Pretreatment of animals with r-TFPI prevented LPS-induced hypotension. Recombinant TFPI significantly inhibited the increases in both the plasma levels of NO2-/NO3- and lung iNOS activity 3 h after LPS administration. Expression of iNOS mRNA in the lung was also inhibited by intravenous administration of r-TFPI. However, neither DX-9065a, a selective inhibitor of factor Xa, nor an inactive derivative of factor VIIa (DEGR-F.Vlla) that selectively inhibits factor VIIa activity, had any effect on LPS-induced hypotension despite their potent anticoagulant effects. Moreover, neither the plasma levels of NO2-/NO3- nor lung iNOS activity were affected by administration of DX-9065a and DEGR-F.VIIa. These results suggested that r-TFPI ameliorates LPS-induced hypotension by reducing excessive production of NO in rats given LPS and this effect was not attributable to its anticoagulant effects, but to the inhibition of TNF-alpha production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.