Abstract

Chemokine receptors are generally sulfated at tyrosine residues of the N-terminal region. Tyrosine sulfation of the C–C chemokine receptor type 2 (CCR2) enhances its interaction with the chemokine ligand CCL2. Here, we generated a recombinant sulfated CCR2 peptide trap (mCCR2-S2) and investigated its effects on retinal degeneration in mice. Treatment with mCCR2-S2 reduced choroidal neovascularization (CNV) in a laser-induced CNV mouse model. In NaIO3-injected mice, treatment with mCCR2-S2 increased the outer nuclear layer thickness and rhodopsin expression in the retinas compared to that in mice treated with mCCR2-wild-type or glutathione S-transferase controls. Furthermore, glial fibrillary acidic protein (GFAP) expression and macrophage infiltration were decreased in mCCR2-S2-treated retinas. Recombinant mCCR2-S2 suppressed CNV development and retinal degeneration, possibly by regulating macrophage infiltration. Thus, the sulfated form of the CCR2 peptide trap may be a useful tool for treating patients with retinal degeneration, such as those with age-related macular degeneration and intraocular inflammatory disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call