Abstract

The engineered and recombinant spider silk protein eADF4(C16) has been shown to be a promising biomaterial for the use as drug delivery system. In previous studies, eADF4(C16) particles were loaded with low molecular weight drugs exhibiting a positive net-charge and sufficient hydrophobicity. Here, we demonstrate that also macromolecular drugs like proteins can be loaded on eADF4(C16) particles. Using lysozyme as a model protein, remarkably high loading of up to 30% [w/w] was feasible and high loading efficiencies of almost 100% were obtained. Furthermore, using confocal laser scanning microscopy, it is demonstrated that fluorescently labeled lysozyme is not only adsorbed to the negatively charged particles’ surface, but also diffusing into the matrix of eADF4(C16) particles. The release of lysozyme is shown to be dependent on the ionic strength and pH of the release medium. To improve the long-term stability of eADF4(C16) containing dispersions, lyophilization is shown as a suitable tool. Disaccharides (sucrose, trehalose) and mannitol served as stabilizers to prevent aggregation and/or particle degradation during freeze-drying. The slowly biodegradable eADF4(C16) particles are a promising new particulate drug carrier system for the delivery of susceptible drugs like therapeutic proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.