Abstract

In developing countries, one-third of patients with reactive arthritis (ReA) and undifferentiated spondyloarthropathy (uSpA) are triggered by Salmonella typhimurium. Synovial fluid mononuclear cells (SFMCs) of patients with ReA and uSpA proliferate to low molecular weight fractions (lmwf) of outer membrane proteins (Omp) of S. typhimurium. To characterize further the immunity of Omp of Salmonella, cellular immune response to two recombinant proteins of lmwf, OmpA and OmpD of S. typhimurium (rOmpA/D-sal) was assessed in 30 patients with ReA/uSpA. Using flow cytometry, 17 of 30 patients' SF CD8(+) T cells showed significant intracellular interferon (IFN)-γ to Omp crude lysate of S. typhimurium. Of these 17, 11 showed significantly more CD8(+) CD69(+) IFN-γ T cells to rOmpA-sal, whereas only four showed reactivity to rOmpD-sal. The mean stimulation index was significantly greater in rOmpA-sal than rOmpD-sal [3·0 (1·5-6·5) versus 1·5 (1·0-2·75), P < 0·005]. Similarly, using enzyme-linked immunospot (ELISPOT) in these 17 patients, the mean spots of IFN-γ-producing SFMCs were significantly greater in rOmpA-sal than rOmpD-sal [44·9 (3·5-130·7) versus 19·25 (6-41), P < 0·05]. SFMCs stimulated by rOmpA-sal produced significantly more proinflammatory cytokines than rOmpD-sal: IFN-γ [1·44 (0·39-20·42) versus 0·72 (0·048-9·15) ng/ml, P < 0·05], interleukin (IL)-17 [28·60 (6·15-510·86) versus 11·84 (6·83-252·62) pg/ml, P < 0·05], IL-23 [70·19 (15-1161·16) versus 28·25 (> 15-241·52) pg/ml, P < 0·05] and IL-6 [59·78 (2·03-273·36) versus 10·17 (0·004-190·19) ng/ml, P < 0·05]. The rOmpA-sal-specific CD8(+) T cell response correlated with duration of current synovitis (r = 0·53, P < 0·05). Thus, OmpA of S. typhimurium is a target of SF CD8(+) T cells and drives SFMC to produce increased cytokines of the IL-17/IL-23 axis which contribute to the pathogenesis of Salmonella-triggered ReA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.