Abstract

A chimeric gene encoding enhanced green fluorescent protein (EGFP) and a S-layer protein from Lactobacillus brevis KCTC3102, and/or two copies of the Fc-binding Z-domain, a synthetic analog of the B-domain of protein A, was constructed and expressed in Escherichia coli BL21(DE3). The S-layer fusion proteins produced in a 500-l fermentor were likely to be stable in the range of pH 5 to 8 and 0 degree to 40 degrees . Their adhesive property enabled an easy and rapid immobilization of enzymes or antibodies on solid materials such as plastics, glass, sol-gel films, and intestinal epithelial cells. Owing to their affinity towards intestinal cells and immunoglobulin G, the Slayer fusion proteins enabled the adhesion of antibodies to human epithelial cells. In addition, feeding a mixture of the S-layer fusion proteins and antibodies against neonatal calf diarrhea (coronavirus, rotavirus, Escherichia coli, and Salmonella typhimurium) to Hanwoo calves resulted in 100% prevention of neonatal calf diarrhea syndrome (p<0.01),whereas feeding antibodies only resulted in 56% prevention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call