Abstract

TRAM/TICAM-2 is used by Toll-like receptor 4 (TLR4) as a bridging adaptor during the mammalian innate immune response. It recruits TRIF, another TIR domain-containing adaptor protein, to TLR4 via TIR domain interactions, which leads to the activation of transcription factors responsible for the production of type-1 interferon and cytokines. The molecular mechanisms of these dual interactions mediated by the TRAM TIR domain are not clear. To understand the molecular basis of TIR:TIR domain interactions, structural and biochemical studies of TRAM TIR domain are necessary, and require a functional soluble protein. In this paper, we report a successful purification and characterization of full-length TRAM. Because full-length TRAM likely contains unstructured regions that may be disadvantageous for structural studies, we also carried out a systematic construct design to determine the boundaries of the TRAM TIR domain. The truncated TRAM constructs were designed based on secondary structure predictions and screened by small-scale expression. Selected constructs were subjected to biophysical analyses. We show that the expressed TRAM TIR domain is functional using in vitro GST pull-down assays that demonstrate a physical interaction with the TLR4 TIR domain. We further show, by site-directed mutagenesis, that the “BB loop” regions of both the TRAM TIR domain and the TLR4 TIR domain are crucial for this physical interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call