Abstract

BackgroundHymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Proper diagnosis of hymenoptera venom allergy using venom extracts is severely affected by molecular cross-reactivities. Although non-glycosylated marker allergens would facilitate the identification of the culprit venom, the major allergen phospholipase A1 (Ves v 1) from yellow jacket venom (YJV) remained unavailable so far.MethodsExpression of Ves v 1 as wild type and enzymatically inactivated mutant and Ves v 5 in insect cells yielded soluble proteins that were purified via affinity chromatography. Functionality of the recombinant allergens was assessed by enzymatic and biophysical analyses as well as basophil activation tests. Diagnostic relevance was addressed by ELISA-based analyses of sera of YJV-sensitized patients.ResultsBoth major allergens Ves v 1 and Ves v 5 could be produced in insect cells in secreted soluble form. The recombinant proteins exhibited their particular biochemical and functional characteristics and were capable for activation of human basophils. Assessment of IgE reactivity of sera of YJV-sensitized and double-sensitized patients emphasised the relevance of Ves v 1 in hymenoptera venom allergy. In contrast to the use of singular molecules the combined use of both molecules enabled a reliable assignment of sensitisation to YJV for more than 90% of double-sensitised patients.ConclusionsThe recombinant availability of Ves v 1 from yellow jacket venom will contribute to a more detailed understanding of the molecular and allergological mechanisms of insect venoms and may provide a valuable tool for diagnostic and therapeutic approaches in hymenoptera venom allergy.

Highlights

  • Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals

  • Results cDNA cloning and recombinant expression in insect cells For recombinant production of the YJV allergens Ves v 1 and Ves v 5 the particular cDNA was amplified from yellow jacket venom gland cDNA

  • Standard diagnostic approaches in hymenoptera venom allergy, and in plant associated allergies are often hampered by multiple IgE reactivities affecting the interpretation of ambiguous results and the correct choice of the proper venom for immunotherapy, a prerequisite for efficient therapy [1]

Read more

Summary

Introduction

Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Non-glycosylated marker allergens would facilitate the identification of the culprit venom, the major allergen phospholipase A1 (Ves v 1) from yellow jacket venom (YJV) remained unavailable so far. Hymenoptera stings may cause life-threatening and sometimes fatal IgE-mediated anaphylactic reactions with the major threat emanating from the yellow jacket V. vulgaris and the honeybee A. mellifera. The most promising approach for the development of reliable diagnostics as well as safer and more efficacious patient-tailored treatment modalities relies on the use of defined recombinant allergens [3]. For honeybee venom (HBV), phospholipase A2 (Api m 1) has emerged as surrogate marker, for YJV access to native proteins is limited and only a minor number of recombinant allergens are available [4,5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call