Abstract

This study was performed to determine if recombinant human osteogenic protein-1 (rhOP-1) is effective in promoting matrix synthesis and matrix formation by rabbit nucleus pulposus (NP) and annulus fibrosus (AF) cells cultured in alginate beads. The effects of culturing the cells in the presence of various concentrations of rhOP-1 were assessed by measuring changes in cell proliferation, proteoglycan (PG) and collagen synthesis and mRNA expression, and in the matrix contents of PG and collagen, as indicators of matrix accumulation. At high concentrations, rhOP-1 had a moderate mitogenic effect on both NP and AF cells. It also stimulated the synthesis of PG and collagen in a dose-dependent manner: this was associated with a corresponding increase in the expression of mRNA for aggrecan core protein and collagen type II. The stimulatory effect of rhOP-1 on PG synthesis was more pronounced than that on collagen synthesis. Continuous treatment with rhOP-1 led to an increase in the total DNA, PG and collagen contents in both NP and AF cultures. The results presented here provide evidence of the ability of rhOP-1 to stimulate the metabolism of both rabbit AF and NP cells cultured in alginate beads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.