Abstract

Encouraged by remarkable successes in preventing infectious diseases and by the well-established potential of the immune system for controlling tumor growth, active therapeutic immunization approaches hold great promise for treating malignant tumors. In recent years, engineered recombinant viral vectors have been carefully examined as genetic-immunization vehicles and have been demonstrated to induce potent T-cell-mediated immune responses that can control tumor growth. Very recent efforts suggest that lentivectors possess important advantages over other candidate recombinant viral vectors for genetic immunization. Here, we review the development of recombinant lentivectors and the characteristics of T-cell immune responses elicited by lentivector immunization, including the mechanism of T-cell priming with a focus on the role of skin dendritic cells and potential applications for tumor immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.