Abstract

BackgroundCalcium oxalate (CaOx) is the major constituent of about 75% of all urinary stone and the secondary hyperoxaluria is a primary risk factor. Current treatment options for the patients with hyperoxaluria and CaOx stone diseases are limited. Oxalate degrading bacteria might have beneficial effects on urinary oxalate excretion resulting from decreased intestinal oxalate concentration and absorption. Thus, the aim of the present study is to examine the in vivo oxalate degrading ability of genetically engineered Lactobacillus plantarum (L. plantarum) that constitutively expressing and secreting heterologous oxalate decarboxylase (OxdC) for prevention of CaOx stone formation in rats. The recombinants strain of L. plantarum that constitutively secreting (WCFS1OxdC) and non-secreting (NC8OxdC) OxdC has been developed by using expression vector pSIP401. The in vivo oxalate degradation ability for this recombinants strain was carried out in a male wistar albino rats. The group I control; groups II, III, IV and V rats were fed with 5% potassium oxalate diet and 14th day onwards group II, III, IV and V were received esophageal gavage of L. plantarum WCFS1, WCFS1OxdC and NC8OxdC respectively for 2-week period. The urinary and serum biochemistry and histopathology of the kidney were carried out. The experimental data were analyzed using one-way ANOVA followed by Duncan’s multiple-range test.ResultsRecombinants L. plantarum constitutively express and secretes the functional OxdC and could degrade the oxalate up to 70–77% under in vitro. The recombinant bacterial treated rats in groups IV and V showed significant reduction of urinary oxalate, calcium, uric acid, creatinine and serum uric acid, BUN/creatinine ratio compared to group II and III rats (P < 0.05). Oxalate levels in kidney homogenate of groups IV and V were showed significant reduction than group II and III rats (P < 0.05). Microscopic observations revealed a high score (4+) of CaOx crystal in kidneys of groups II and III, whereas no crystal in group IV and a lower score (1+) in group V.ConclusionThe present results indicate that artificial colonization of recombinant strain, WCFS1OxdC and NC8OxdC, capable of reduce urinary oxalate excretion and CaOx crystal deposition by increased intestinal oxalate degradation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12929-014-0086-y) contains supplementary material, which is available to authorized users.

Highlights

  • Calcium oxalate (CaOx) is the major constituent of about 75% of all urinary stone and the secondary hyperoxaluria is a primary risk factor

  • Engineered lactic acid bacteria (LAB) efficiently degraded oxalate under in vitro The recombinant oxalate decarboxylase (OxdC)-secretory L. plantarum WCFS1OxdC harboring the recombinant vector pLdhl0373OxdC size of 4.7 kb and non-secretory L. plantarum NC8OxdC harboring the recombinant plasmid without signal peptide sequence pLdhlOxdC was used to analyze in vivo oxalate degradation in rat model

  • The specific activity of recombinant OxdC purified from recombinant strain of WCFS1OxdC was found to be 19.1 U/mg and secretion efficiency of the strain WCFS1OxdC shows that 25% of the OxdC produced was secreted into the medium

Read more

Summary

Introduction

Calcium oxalate (CaOx) is the major constituent of about 75% of all urinary stone and the secondary hyperoxaluria is a primary risk factor. Current treatment options for the patients with hyperoxaluria and CaOx stone diseases are limited. The aim of the present study is to examine the in vivo oxalate degrading ability of genetically engineered Lactobacillus plantarum (L. plantarum) that constitutively expressing and secreting heterologous oxalate decarboxylase (OxdC) for prevention of CaOx stone formation in rats. Secondary hyperoxaluria either based on intestinal hyperabsorption of oxalate or high intake of oxalate is considered a crucial risk factor in the pathogenesis of CaOx stone formation [3]. Existing treatments for patients with CaOx urolithiasis are limited and do not always lead to sufficient reduction in UOx excretion. The invasive technologies (shockwave lithotripsy, ureteroscopy, percutaneous stone extractions) exist, these techniques have its own disadvantages like renal injury, recurrent stone formation with a prevalence of 50% over 10 years

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.