Abstract

Currently, no effective therapy and potential target have been elucidated for preventing myocardial ischemia and reperfusion injury (I/R). We hypothesized that the administration of recombinant klotho (rKL) protein could attenuate the sterile inflammation in peri-infarct regions by inhibiting the extracellular release of high mobility group box-1 (HMGB1). This hypothesis was examined using a rat coronary artery ligation model. Rats were divided into sham, sham+ rKL, I/R, and I/R+ rKL groups (n = 5/group). Administration of rKL protein reduced infarct volume and attenuated extracellular release of HMGB1 from peri-infarct tissue after myocardial I/R injury. The administration of rKL protein inhibited the expression of pro-inflammatory cytokines in the peri-infarct regions and significantly attenuated apoptosis and production of intracellular reactive oxygen species by myocardial I/R injury. Klotho treatment significantly reduced the increase in the levels of circulating HMGB1 in blood at 4 h after myocardial ischemia. rKL regulated the levels of inflammation-related proteins. This is the first study to suggest that exogenous administration of rKL exerts myocardial protection effects after I/R injury and provides new mechanistic insights into rKL that can provide the theoretical basis for clinical application of new adjunctive modality for critical care of acute myocardial infarction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.