Abstract

Coccidiosis is an intestinal parasitic disease that is caused by Eimeria tenella and other species, and it seriously restricts the economic development of the broiler breeding industry. In this study, a recombinant Lactobacillus plantarum with an invasive effect was constructed, and it expressed the TA4-AMA1 protein of E. tenella. After oral immunization with recombinant L. plantarum, specific humoral and mucosal immune levels were measured by indirect ELISA, and the differentiation of T cells was analysed by flow cytometry. After challenge with sporulated oocysts, the body weight, oocyst shedding and cecum lesions of the chicken were evaluated. The results indicated that chickens immunized with recombinant invasive L. plantarum produced higher levels of specific antibodies in the serum than did the non-immunized controls, and the secretory IgA (sIgA) levels were increased in the intestinal washes compared to those of the controls (P < 0.05). Flow cytometry showed that recombinant invasive L. plantarum significantly stimulated T cell differentiation compared to the PBS group (P < 0.01, P < 0.001), and a higher proportion of CD4+ and CD8+ T cells were detected in peripheral blood. Moreover, the lesion scores and histopathological caecum sections showed that immunizing chickens with recombinant invasive L. plantarum can significantly relieve pathological damage in the cecum (P < 0.01), and the relative body weight gain was 89.64 %, which was higher than the 79.83 % gain in the chickens immunized with non-invasive L. plantarum. After the challenge, faeces from ten chickens in each group were collected between 4 and 7 days, and the oocysts per gram (OPG) was determined by the McMaster technique. The data indicated that oocysts in the faeces of chickens immunized with the recombinant invasive L. plantarum were significantly lower than those of the controls (P < 0.01). The results suggest that recombinant invasive L. plantarum effectively activated immune responses against E. tenella infection and can be used as a candidate vaccine against E. tenella infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call