Abstract

Human serotonin 5A (5-HT5A) receptors were stably expressed in undifferentiated C6 glioma. In 5-HT5A receptors-expressing cells, accumulation of cAMP by forskolin was inhibited by 5-HT as reported previously. Pertussis toxin-sensitive inhibition of ADP-ribosyl cyclase was also observed, indicating a decrease of cyclic ADP ribose, a potential intracellular second messenger mediating ryanodine-sensitive Ca2+ mobilization. On the other hand, 5-HT-induced outward currents were observed using the patch-clamp technique in whole-cell configuration. The 5-HT-induced outward current was observed in 84% of the patched 5-HT5A receptor-expressing cells and was concentration-dependent. The 5-HT-induced current was inhibited when intracellular K+ was replaced with Cs+ but was not significantly inhibited by typical K+ channel blockers. The 5-HT-induced current was significantly attenuated by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) in the patch pipette. Depleting intracellular Ca2+ stores by application of caffeine or thapsigargin also blocked the 5-HT-induced current. Blocking G protein, the inositol triphosphate (IP3) receptor, or pretreatment with pertussis toxin, all inhibited the 5-HT-induced current. IP3 showed a transient increase after application of 5-HT in 5-HT5A receptor-expressing cells. It was concluded that in addition to the inhibition of cAMP accumulation and ADP-ribosyl cyclase activity, 5-HT5A receptors regulate intracellular Ca2+ mobilization which is probably a result of the IP3-sensitive Ca2+ store. These multiple signal transduction systems may induce complex changes in the serotonergic system in brain function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.