Abstract

N-acetylneuraminic acid (sialic acid) is an abundantly found carbohydrate moiety covering the surface of all vertebrate cells and secreted glycoproteins. The human N-acetylneuraminate pyruvate lyase (NPL) interconverts sialic acid to N-acetylmannosamine and pyruvate, and mutations of the NPL gene were found to cause sialuria and impair the functionality of muscles. Here we report the soluble and functional expression of human NPL in Escherichia coli, which allowed us to study the biochemical properties of two clinically relevant NLP mutations (Asn45Asp and Arg63Cys). The Asn45Asp mutant variant was enzymatically active, but had lower expression levels and showed reduced stability when compared to the wild-type NPL variant. Expression trials of the Arg63Cys mutant did not yield any recombinant protein and consequently, no enzymatic activity was detected. The locations of these clinically relevant amino acid substitutions are also discussed by using a human NPL homology model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.