Abstract
A novel non-invasive technique termed microknemometry, which allows daily leg length measurement, was used to investigate the growth promoting effect of growth hormone (GH) on peripubertal rats. We compared the effect of different patterns of recombinant human (rh) GH administration to peripubertal male rats with the effect produced by two daily administrations of the same amount of rhGH to peripubertal female rats or adult male rats. Another group of peripubertal male rats was also submitted to a 3-day period of starvation, in order to study catch-up growth during refeeding and to determine whether this process could be stimulated by exogenous GH administration. GH treatment was unable to stimulate tibial growth or weight gain in peripubertal males, whereas a clear growth promoting effect was observed in female rats and also in adult male rats. Starvation caused a dramatic body weight loss, and a reduction in tibial growth rate. Peripubertal male rats gained body weight faster than unstarved animals during refeeding, although recovery was not complete after nine days. Tibial growth, however, was resumed at the same speed as in normally fed males. This means that no catch-up effect was observed after refeeding in animals either with or without GH treatment. During peripuberty, normal male rats grow at a maximal speed that cannot be further increased by exogenous GH treatment, whereas age-matched female rats or older males grow at a slower rate than peripubertal males. Thus, exogenous rhGH administration is capable of enhancing growth velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.